Abstract
A credible assessment of a city’s greenhouse gas (GHG) mitigation policies requires a valid account of a city’s emissions. However, questions persist as to whether cities’ ‘self-reported inventories’ (SRIs) are accurate, precise, and consistent enough to track progress toward city mitigation goals. Although useful for broad policy initiatives, city SRIs provide annual snapshots that may have limited use to city managers looking to develop targeted mitigation policies that overlap with other issues like equity, air quality, and human health. An emerging approach from the research community that integrates ‘bottom-up’ hourly, street-level emission data products with ‘top-down’ GHG atmospheric observations have begun to yield production-based (scope 1) GHG estimates that can track changes in emissions at annual and sub-annual timeframes. The use of this integrated approach offers a much-needed assessment of SRIs: the atmospheric observations are tied to international standards and the bottom-up information incorporates multiple overlapping socio-economic data. The emissions are mapped at fine scales which helps link them to attribute information (e.g. fuel types) that can further facilitate mitigation actions. Here, we describe this approach and compare results to the SRI from the City of Indianapolis which shows a yearly difference of 35% in scope 1 emissions. In the City of Baltimore, we show that granular emission information can help address multiple issues, e.g. GHG emissions, air pollution, and inequity, at the sub-zip code scale where many roots and causes for each issue exist. Finally, we show that the incorporation of atmospheric concentrations within an integrated system provides rapid, near-real-time feedback on CO2 emissions anomalies that can uncover important behavioral and economic relationships. An integrated approach to GHG monitoring, reporting and verification can ensure uniformity, and provide accuracy to city-scale GHG emissions, scalable to states and the nation—ultimately helping cities meet stated ambitions.
Highlights
20 July 2021greenhouse gas (GHG) atmospheric observations have begun to yield production-based (scope 1) GHG estimates that can track changes in emissions at annual and sub-annual timeframes
Many cities across the globe recognize their impact on climate change and have committed to longterm, ambitious greenhouse gas (GHG) emission mitigation targets
The convergence in estimates demonstrates that highaccuracy atmospheric CO2 observations within an integrated system provide the necessary constraint to adjust granular emissions to be consistent with atmospheric CO2—which accounts for all possible city sectoral CO2 emissions
Summary
GHG atmospheric observations have begun to yield production-based (scope 1) GHG estimates that can track changes in emissions at annual and sub-annual timeframes The use of this integrated approach offers a much-needed assessment of SRIs: the atmospheric observations are tied to international standards and the bottom-up information incorporates multiple overlapping socio-economic data. The emissions are mapped at fine scales which helps link them to attribute information (e.g. fuel types) that can further facilitate mitigation actions. We describe this approach and compare results to the SRI from the City of Indianapolis which shows a yearly difference of 35% in scope 1 emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.