Abstract
Three lines of evidence indicate that in the most common type of core collapse supernovae, the energy deposited in the ejecta by the exploding core is approximately proportional to the progenitor mass cubed. This results stems from an observed uniformity of light curve plateau duration, a correlation between mass and ejecta velocity, and the known correlation between luminosity and velocity. This result ties in analytical and numerical models together with observations, providing us with clues as to the mechanism via which the explosion of the core deposits a small fraction of its energy into the hurled envelope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.