Abstract
It is natural and effective to use rules for representing explicit knowledge in knowledge graphs. However, it is challenging to learn rules automatically from very large knowledge graphs such as Freebase and YAGO. This paper presents a new approach, RLvLR (Rule Learning via Learning Representations), to learning rules from large knowledge graphs by using the technique of embedding in representation learning together with a new sampling method. Based on RLvLR, a new method RLvLR-Stream is developed for learning rules from streams of knowledge graphs. Both RLvLR and RLvLR-Stream have been implemented and experiments conducted to validate the proposed methods regarding the tasks of rule learning and link prediction. Experimental results show that our systems are able to handle the task of rule learning from large knowledge graphs with high accuracy and outperform some state-of-the-art systems. Specifically, for massive knowledge graphs with hundreds of predicates and over 10M facts, RLvLR is much faster and can learn much more quality rules than major systems for rule learning in knowledge graphs such as AMIE+. In the setting of knowledge graph streams, RLvLR-Stream significantly improved RLvLR for both rule learning and link prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.