Abstract

In this paper, a new shock-fitting technique based on unstructured dynamic grids is proposed to improve the performances of the unstructured “boundary” shock-fitting technique developed by Liu and co-workers in [1, 2]. The main feature of this new technique, which we call the “embedded” shock-fitting technique, is its capability to insert or remove shocks or parts thereof during the calculation. This capability is enabled by defining subsets of grid-points (mutually connected by lines) which behave as either “common”- or “shock”-points, shock-waves being made of an ordered collection of shock-points. Two different sets of flow variables, corresponding to the upstream and downstream sides of the shocks, are assigned to the shock-points, which may be switched to common- and back to shock-points, a feature that allows to vary the length of the existing shocks and/or make new shock-branches appear. This paper illustrates the algorithmic features of this new technique and presents the results obtained when simulating both steady and un-steady, two-dimensional flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.