Abstract

Orthogonal Time Frequency Space modulation (OTFS) has evolved as an astounding modulation technique for high-speed communication in a doubly dispersive channel. In any wireless communication system, channel estimation and equalization are essential at the receiver to recover the transmitted data. To accomplish this for the emerging OTFS based systems, a modified embedded pilot-based channel estimation technique and low complexity feedback equalization algorithm for integer Doppler shifts in the delay-Doppler domain are proposed in this paper. Our channel estimation scheme exploits embedded-pilot arrangement, and the symbol equalization relies on the Interference calculation and its mitigation iteratively. To achieve this we contemplate a prudent arrangement of symbols in the OTFS frame in such a way that the Guard symbols prevent the interference between data symbols and the pilot symbol at the receiver. Two distinct lumps of received data of the same OTFS frame will be engaged in channel estimation and data detection. An analytical expression of the theoretical Cramer Rao Lower Bound (CRLB) is derived and plotted for the proposed channel estimation scheme. The attained simulation results for Bit-Error-Rate (BER) under the proposed scheme show a significant error rate improvement over the Minimum Mean Squared Error (MMSE) equalization algorithm. Further, a lower computational complexity is also achieved in comparison with modified MMSE detection and MP detection algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call