Abstract

The representation of geometric objects and their transformation are the two key aspects in computer graphics applications. Traditionally, computer-intensive matrix calculations are involved in modeling and rendering three-dimensional (3D) scenery. Geometric algebra (aka Clifford algebra) is attracting attention as a natural way to model geometric facts and as a powerful analytical tool for symbolic calculations. In this paper, the architecture of Clifford coprocessor (CliffoSor) is introduced. CliffoSor is an embedded parallel coprocessing core that offers direct hardware support to Clifford algebra operators. A prototype implementation on a programmable gate array (FPGA) board is detailed. Initial test results show the potential to achieve a 20× speedup for 3D vector rotations, a 12× speedup for Clifford sums and differences, and more than a 4× speedup for Clifford products, compared to the analogous operations in GAIGEN, a standard geometric algebra library generator for general-purpose processors. An execution analysis of a raytracing application is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.