Abstract

In this study, we design an embedded surface EMG acquisition device to conveniently collect human surface EMG signals, pursue more intelligent human-computer interactions in exoskeleton robots, and enable exoskeleton robots to synchronize with or even respond to user actions in advance. The device has the characteristics of low cost, miniaturization, and strong compatibility, and it can acquire eight-channel surface EMG signals in real time while retaining the possibility of expanding the channel. This paper introduces the design and function of the embedded EMG acquisition device in detail, which includes the use of wired transmission to adapt to complex electromagnetic environments, light signals to indicate signal strength, and an embedded processing chip to reduce signal noise and perform filtering. The test results show that the device can effectively collect the original EMG signal, which provides a scheme for improving the level of human-computer interactions and enhancing the robustness and intelligence of exoskeleton equipment. The development of this device provides a new possibility for the intellectualization of exoskeleton systems and reductions in their cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.