Abstract

N-glycans are diversified by a panel of glycosyltransferases in the Golgi, which are supposed to modify various glycoproteins in promiscuous manners, resulting in unpredictable glycosylation profiles in general. In contrast, our previous study showed that fucosyltransferase 9 (FUT9) generates Lewis X glycotopes primarily on lysosome-associated membrane protein 1 (LAMP-1) in neural stem cells. Here, we demonstrate that a contiguous 29-amino acid sequence in the N-terminal domain of LAMP-1 is responsible for promotion of the FUT9-catalyzed Lewis X modification. Interestingly, Lewis X modification was induced on erythropoietin as a model glycoprotein both in vitro and in cells, just by attaching this sequence to its C-terminus. Based on these results, we conclude that the amino acid sequence from LAMP-1 functions as a “Lewis X code”, which is deciphered by FUT9, and can be embedded into other glycoproteins to evoke a Lewis X modification, opening up new possibilities for protein engineering and cell engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.