Abstract

The elongation cycle of protein synthesis is completed by translocation, a rearrangement during which two tRNAs bound to the mRNA move on the ribosome. The reaction is promoted by elongation factor G (EF-G) and accelerated by GTP hydrolysis. Here we report a pre-steady-state kinetic analysis of translocation. The kinetic model suggests that GTP hydrolysis drives a conformational rearrangement of the ribosome that precedes and limits the rates of tRNA-mRNA translocation and Pi release from EF-G·GDP·Pi. The latter two steps are intrinsically rapid and take place at random. These results indicate that the energy of GTP hydrolysis is utilized to promote the ribosome rearrangement and to bias spontaneous fluctuations within the ribosome-EF-G complex toward unidirectional movement of mRNA and tRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.