Abstract
Dwell time estimation plays an important role in the operation of urban rail system. On this specific problem, a range of models based on either polynomial regression or microsimulation have been proposed. However, the generalization performance of polynomial regression models is limited and the accuracy of existing microsimulation models is unstable. In this paper, a new dwell time estimation model based on extreme learning machine (ELM) is proposed. The underlying factors that may affect urban rail dwell time are analyzed first. Then, the relationships among different factors are extracted and modeled by ELM neural networks, on basis of which an overall estimation model is proposed. At last, a set of observed data from Beijing subway is used to illustrate the proposed method and verify its overall performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.