Abstract

An ellipsoidal void model, which is based on a parallelogrammic void model, is proposed for simulating ductile fracture behavior. It is used to analyze ductile fracture behavior in three plastic deformation modes: plane strain tension, uniaxial tension, and simple shear. The relationship between the fracture strain and the initial void volume fraction in uniaxial tension calculated using the void model agrees with that calculated using a finite-element void cell and agrees reasonably well with experimentally determined relationships in previous studies. For a specified initial void volume fraction, plane strain tension and simple shear respectively have the smallest and largest nominal fracture strains of the three plastic deformation modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.