Abstract
This paper presents an ellipsoidal model that is constructed for small layered nonspherical particles and methods for constructing “effective” multilayer ellipsoids, the light-scattering properties of which would be close to the corresponding properties of original particles. In the case of axisymmetric particles, prolate or oblate spheroids (ellipsoids of revolution) are implied. Numerical calculations of the polarizability and scattering cross sections of small layered nonspherical particles, including nonconfocal (similar) spheroids, Chebyshev particles, and pseudospheroids, are performed by different approximate and rigorous methods. Approximate approaches involve the use of an ellipsoidal model, in which the polarizability of a layered particle is determined in two ways. In the first case, the polarizability is calculated in the approximation of confocal spheroids, while, in the second case, it is sought as a linear combination of the polarizabilities of embedded spheroids proportionally to the volumes of layers. Among rigorous methods, the extended boundary conditions method and the generalized separation of variables method are applied. On the basis of a comparison of the results obtained with rigorous and approximate approaches, their drawbacks and advantages are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.