Abstract

Various continuous ant colony optimization (CACO) strategies are proposed by researchers to resolve continuous single response optimization problems. However, no such work is reported which also verifies suitability of CACO in case of both single and multiple response situations. In addition, as per literature survey, no variant of CACO can balance simultaneously all the three important aspects of an efficient search strategy, viz. escaping local optima, balancing between intensification and diversification scheme, and handling correlated variable search space structure. In this paper, a variant of CACO, so-called ‘CACO-MDS’ is proposed, which attempts to address all these three aspects. CACO-MDS strategy is based on a Mahalanobis distance-based diversification, and Nelder–Mead simplex-based intensification search scheme. Mahalanobis distance-based diversification search ensures exact measure of multivariate distance for correlated structured search space. The proposed CACO-MDS strategy is verified using fourteen single and multiple response multimodal function optimization test problems. A comparative analysis of CACO-MDS, with three different metaheuristic strategies, viz. ant colony optimization in real space (ACOR), a variant of local-best particle swarm optimization (SPSO) and simplex-simulated annealing (SIMPSA), also indicates its superiority in most of the test situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.