Abstract

Recent advances in computation technology for decision/simulation and uncertainty analyses have revived interest in the triangular distribution and its use to describe uncertainty of bounded input phenomena. The trapezoidal distribution is a generalization of the triangular distribution that allows for the specification of the modal value by means of a range of values rather than a single point estimate. Whereas the trapezoidal and the triangular distributions are restricted to linear geometric forms in the successive stages of the distribution, the generalized trapezoidal (GT) distribution allows for a nonlinear behavior at its tails and a linear incline (or decline) in the central stage. In this paper we develop two novel elicitation procedures for the parameters of a special case of the GT family by restricting ourselves to a uniform (horizontal) central stage in accordance with the central stage of the original trapezoidal distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.