Abstract
Abstract This paper is concerned with a two-sorted probabilistic language, denoted by $\textsf{QPL}$, which contains quantifiers over events and over reals, and can be viewed as an elementary language for reasoning about probability spaces. The fragment of $\textsf{QPL}$ containing only quantifiers over reals is a variant of the well-known ‘polynomial’ language from Fagin et al. (1990, Inform. Comput., 87, 78–128). We shall prove that the $\textsf{QPL}$-theory of the Lebesgue measure on $\left [ 0, 1 \right ]$ is decidable, and moreover, all atomless spaces have the same $\textsf{QPL}$-theory. Also, we shall introduce the notion of elementary invariant for $\textsf{QPL}$ and use it to translate the semantics for $\textsf{QPL}$ into the setting of elementary analysis. This will allow us to obtain further decidability results as well as to provide exact complexity upper bounds for a range of interesting undecidable theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.