Abstract
Fredman and Knuth have treated certain recurrences, such as $M(0) = 1$ and \[M(n + 1) = \mathop {\min }\limits_{0 \leqslant k \leqslant n} (\alpha M(k) + \beta M(n - k)),\] where $\min (\alpha ,\beta ) > 1$, by means of auxiliary recurrences such as \[h(x) = \left\{ {\begin{array}{*{20}c} {0\qquad {\text{if}}0 \leqslant x < 1,} \\ {1 + h({x / \alpha }) + h({x / \beta }){\text{ if}}1 \leq x < \infty .} \\ \end{array} } \right.\] The asymptotic behavior of $h(x)$ as $x \to \infty $ with $\alpha $ and $\beta $ fixed depends on whether ${{\log \alpha } / {\log \alpha }}$ is rational or irrational. The solution of Fredman and Knuth used analytic methods in both cases, and used in particular the Wiener–Ikehara Tauberian theorem in the irrational case. The author shows that a more explicit solution to these recurrences can be obtained by entirely elementary methods, based on a geometric interpretation of $h(x)$ as a sum of binomial coefficients over a triangular subregion of Pascal’s triangle. Apart from Stirling's formula, in the irrational case only the Kronecker–Weyl theorem (which can itself be proved by elementary methods) is needed, to the effect that if is irrational, the fractional parts of the sequence $\vartheta ,2\vartheta ,3\vartheta , \cdots $, are uniformly distributed in the unit interval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.