Abstract

We present an alternative approach to the theory of free Gibbs states with convex potentials. Instead of solving SDE's, we combine PDE techniques with a notion of asymptotic approximability by trace polynomials for a sequence of functions on $M_N(\mathbb{C})_{sa}^m$ to prove the following. Suppose $\mu_N$ is a probability measure on on $M_N(\mathbb{C})_{sa}^m$ given by uniformly convex and semi-concave potentials $V_N$, and suppose that the sequence $DV_N$ is asymptotically approximable by trace polynomials. Then the moments of $\mu_N$ converge to a non-commutative law $\lambda$. Moreover, the free entropies $\chi(\lambda)$, $\underline{\chi}(\lambda)$, and $\chi^*(\lambda)$ agree and equal the limit of the normalized classical entropies of $\mu_N$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.