Abstract

Biological modulation of element incorporation presents a major hurdle in the interpretation of geochemical data as an environmental proxy, detailed understanding and quantitative evaluation of the mechanism of elemental fractionation both being essential for reliable reconstruction of an environment. Biogenic calcium carbonate has a specific skeletal microstructure, which is strongly controlled by biomineralization. Since primary processes are more likely reflected on a smaller spatial scale, elemental distribution patterns associated with skeletal microstructure should provide unique information on biological elemental fluctuations, which cannot be determined from large-scale analysis. To study elemental fractionation mechanisms, microscale elemental distribution patterns have been studied in coral skeletons and bivalve and foraminiferal shells and the skeletal microstructure, sulfur distribution, and organic features compared. The microanalytical studies revealed two characteristic patterns that were common to all studied biogenic calcium carbonates, even though the specimens examined represented different phyla: (1) significant compositional heterogeneities that could not be explained by changes in the ambient environment and (2) a strong correlation of “metal/Ca” ratios with all or some of sulfur distribution, skeletal microstructure, and organic character. Based on these common features, I propose a mechanism of elemental fractionation, commonly applicable to biogenic calcium carbonates and involving both composition and/or concentration of organics in the calcifying fluid, that facilitates preferential elemental incorporation into biogenic calcium carbonate.

Highlights

  • Mg/Ca and Sr/Ca ratios in biogenic calcium carbonate are widely used as proxies for estimating past seawater temperatures (e.g., Henderson 2002; Lea 2003)

  • The aim of the present study was to examine a common, cross-phylum fractionation mechanism based on microscale elemental distribution in coral skeletons and bivalve and foraminiferal shells, comparing elemental distribution, skeletal/shell microstructure, sulfur distribution, and organic features

  • Similar correlations between chemical composition and microstructure have been documented in other coral skeleton studies (e.g., Meibom et al 2004, 2008), bivalve shell

Read more

Summary

Introduction

Mg/Ca and Sr/Ca ratios in biogenic calcium carbonate are widely used as proxies for estimating past seawater temperatures (e.g., Henderson 2002; Lea 2003). Such ratios are more or less affected by biological processes, so-­ called vital effects (Cohen and McConnaughey 2003). The Sr/Ca ratio in a coral skeleton (aragonite) and Mg/Ca ratio in a foraminiferan test (calcite) reflect temperature relatively precisely (Lea 2003), whereas Mg/Ca in the former and Sr/Ca in the latter, and both ratios in bivalve shells (both aragonite and calcite), are susceptible to biological modulation (Schöne 2013). The aim of the present study was to examine a common, cross-phylum fractionation mechanism based on microscale elemental distribution in coral skeletons and bivalve and foraminiferal shells, comparing elemental distribution, skeletal/shell microstructure, sulfur distribution, and organic features

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.