Abstract

AbstractIn a fracture analysis, predicting the fracture location and the progression of the failure is of high importance. An element deletion algorithm is a powerful tool used to visualize the failure evolution and get rid of the distorted elements that prevent the simulation from converging. Primarily, such an algorithm is only found in commercial software such as Abaqus. A similar algorithm was developed and implemented into the Code_Aster platform in this work. The algorithm's effectiveness was tested through a non-linear analysis on a Cor-Ten specimen with notches under uniaxial tension. The element deletion functionality was implemented by defining a virtual material with low stiffness to the deleted elements. The results obtained demonstrated the code's capability in accurately representing the failure progress along the notches. Moreover, by assigning a virtual material to the deleted elements, a complete fracture of the specimen is observed without facing any convergence issues. Overall, the shape of the fracture for a notched specimen conforms well to the physical failure of a ductile material such as Cor-Ten.KeywordsCode_AsterFracture modelingNumerical analysisSustainable manufacturing

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call