Abstract

The innovations of materials science and modern technologies are boosting the prosperity of polymer composites in various emerging multi-disciplinary fields. Cooperating with the conventional and emerging processing methods, the freeze-casting (ice-templating) technique is attracting interest in the assembling of three-dimensional structural materials (3D-SMs) accompanying the growth of ice crystals. These unique 3D-SMs with isotropic, cellular, lamellar and radially aligned structures have enabled to fabricate multifunctional polymer composites as diverse as mechanically reinforced materials, electrically conductive materials, thermally conductive materials, thermally insulating materials, adsorbents, energy-related materials, biomaterials, and many more. Herein, the working principles and methodologies of ice-templating strategy and its recent advances in shaping and structuring of 3D-SMs and production of corresponding multifunctional polymer composites are summarized. Finally, directions and prospects lying ahead are highlighted, involving the structure designs, processing routes and potential applications. Freeze-casting has manifested responsibilities for producing advanced functional composites. What is it being prepared to do?

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.