Abstract
Electrospray ionization mass spectrometry (ESI-MS) was applied to the analysis of the dissociation and denaturation processes of a heterodimeric yeast killer toxin SMKT. The two distinct subunits of SMKT noncovalently associate under acidic conditions, but become dissociated and denatured under neutral and basic conditions. In order to understand the unique pH-dependent denaturation mechanism of this protein, a pH titration was performed by utilizing ESI-MS. The molecular ions of the heterodimer which possesses the highly ordered structure, were mainly observed below pH 4.6. However, the two subunits immediately dissociated at this pH. The spectra measured with various settings of the mass spectrometer indirectly demonstrated that the pH-dependent dissociation occurs in the liquid phase. The current result as well as the three-dimensional structure of SMKT suggest that the deprotonation of a specific carboxyl group triggers a cooperative dissociation process of this protein. In conclusion, the pH titration of a protein by ESI-MS is particularly effective, when the unfolding process or the biological function of the protein is related to the interaction with other molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.