Abstract

The mechanical behavior of fcc (face center cubic) metals and their alloys such as copper-based and aluminum-based materials changes obviously under high current density, but there is a lack of suitable constitutive model to describe the electroplastic behavior of these materials, which limits the accuracy of the mechanical response prediction in applications, such as electromagnetic launch. In this paper, a novel nonlinear constitutive model for electroplastic behavior under the high current density of fcc metals and their alloys is proposed. The model proposed is based on the theory of dislocation evolution, energy transfer theory and electron transport theory and takes into account the effects of high current density on dislocation density, strain rate and resistivity. Considering the evolution of forward and reverse dislocations caused by pulsed current, the relationship between the evolution rate of reverse dislocation and strain is established. Due to the sensitivity of the electroplastic effect to strain rate, the strain rate under electric current is obtained by combining the theory of dislocation thermal activation and energy transfer. According to the concept of thermal resistance and dislocation resistance, the relationship between resistance and current density is derived. The quantitative results demonstrate that this model can well capture the flow stress softening under high current density (>3000 A/mm2) and the transient hardening after current removal because of the consideration of a more suitable strain rate and dislocation evolution. The critical current density that has a significant effect on the strain rate and the current density corresponding to the subsection point of the resistivity are quantitatively obtained. Especially, it is shown that the evolution rate of the reverse dislocation decreases nonlinearly with the increase of strain after the current is removed. These results will be helpful to study the mechanical behavior of the rail during electromagnetic launch and further optimize the design of electromagnetic launch device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call