Abstract

The effect of picomolar concentrations of angiotensin II (AII) was investigated in isolated perfused rabbit renal proximal tubules using conventional or pH-sensitive intracellular microelectrodes. Under control conditions cell membrane potential (Vb) and cell pH (pHi) averaged -53.8 +/- 1.9 mV (mean +/- SEM, n = 49) and 7.24 +/- 0.01 (n = 10), respectively. AII (at 10(-11) mol/l), when applied from the bath (but not when applied from the lumen perfusate), produced the following effects: approximately 85% of the viable tubules responded with a small depolarization (+5.5 +/- 0.4 mV, n = 43) which was accompanied in half of the pHi measurements by a slow acidification (delta pHi = -0.03 +/- 0.01, n = 5). The remaining 15% responded with a small hyperpolarization (delta Vb = -3.1 +/- 0.4 mV, n = 6). All changes were fully reversible and repeatable. Experiments with fast changes in bath HCO3 or K concentrations, as well as measurements of the basolateral voltage divider fraction in response to transepithelial current flow, explain these observations as stimulation of a basolateral Na-HCO3 cotransporter and of a basolateral K conductance. Both counteract in their effect on Vb, but can be individuated by blocker experiments with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and barium. Both the stimulation of Na-HCO3 cotransport and the stimulation of the K conductance may result from down-regulation of the level of cyclic adenosine monophosphate in the cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.