Abstract

In this study we have investigated the acute and chronic effects of cisplatin on whole cell currents in cultured dorsal root ganglion neurones. Consistent with effects on action potentials measured under current clamp, acute (5 min) application of cisplatin (5 microM) attenuated voltage-activated potassium, and mixed cation currents by approximately 50% in both cases. Chronic treatment (5-7 days) of cultured neurones with 5 microM cisplatin also resulted in greatly reduced voltage-activated potassium currents (by 50%) and calcium currents (by 60%) compared to events recorded from neurones not treated with cisplatin. In contrast, the amplitude of inward cation current activated by hyperpolarization was doubled by 5-12 days treatment with cisplatin. Studies on action potential after-depolarizations and calcium-activated chloride currents suggest that cisplatin disturbs calcium homeostatic mechanisms. These observations may account for anode break spike excitation and the low efficiency with which cells buffer intracellular calcium following cisplatin treatment. Dexamethasone has been found to enhance the anti-emetic effects of 5-HT3 receptor antagonists in patients treated with cisplatin. For this reason the actions of dexamethasone were studied in combination with cisplatin treatment. Although acute application of dexamethasone (1-10 microM) produced transient depolarizations and bursts of action potentials, after 5 minutes application it had no effect on membrane potential, input resistance, or the properties of action potentials evoked by depolarizing current commands.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.