Abstract
This paper presents the first circuit that enables microsaccade function in an artificial eyeball system. Currently, the artificial eyeball is receiving increasing development in vision restoration. The main challenge is that the human eye is born with microsaccade that helps refresh vision, avoiding perception fading while the gaze is fixed for a long period, and without microsaccade, high-quality vision restoration is difficult. The proposed electronic microsaccade (E-μSaccade) circuit addresses the issue, and it is intrinsically safe because only charge-balanced stimulus pulses are allowed for stimulation. The E-μSaccade circuit adopts light-to-frequency modulation; due to the circuit’s leakage and dark current of light-sensitive elements, stimulus pulses of a frequency lower than tens of Hz occur, which is the cause of flickering vision. A flicker vision prevention (FVP) circuit is proposed to mitigate the issue. The proposed circuits are designed in a 0.18 μm standard CMOS process. The simulation and measurement results show that the E-μSaccade circuit helps refresh the stimulation pattern and blocks the low-frequency output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.