Abstract

This article posits that there is a correlation between the electronegativity of a catalyst and the position of the same on Sabatier’s volcano curve. On the premise that the electronegativity of a material dictates its reaction behaviour, on both side of the scale the least and most electronegative elements would be very reactive. However, the more stable elements, especially transition metals would behave both as electropositive and electronegative elements, hence foster catalytic activities. Furthermore, assuming that the electronegativity of compounds is the summation of the electronegativity of individual elements, then we could successfully analyse the catalytic activity of compounds and their performance on the Sabatier’s scale. Based on this hypothesis, it is therefore possible for a wide range of catalysts to be produced from a synergy of transition metals thus forming ceramics, which would no doubt be cheaper and hence possibly solve the Platinum and noble metals catalyst challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.