Abstract

Iron-bearing olivine grains naturally altered by oxidation were examined in the transmission electron microscope to determine the precipitate phases and their crystallographic and morphological relationships to the host. Precipitate complexes heterogeneously nucleated on dislocations were composed of Si-rich, Mg-rich/Si-rich, and Fe-rich regions corresponding to α- tridymite, enstatite, and magnetite and/or hematite, respectively. The tridymite and magnetite (hematite) occurred as rod-like interleaved fingers, while the enstatite was more equidimensional. The crystal orientations of the precipitate phases with respect to the host structure, listed in Table 2, were well defined, but, in general, could not be simply related to the close packing of oxygen planes. Iron-rich (001) planar precipitates occasionally nucleated homogeneously in the host as well as heterogeneously on dislocations. Oxygen diffusion does not appear to be the rate-controlling process for precipitate nucleation and growth as precipitation kinetics in fresh olivine oxidized at 900 ° C would indicate an oxygen diffusivity of 10−8 cm2/sec, a value 10 orders of magnitude faster than determined previously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.