Abstract

The intestinal pathway for absorbed fat was traced in thin sections of intestinal villi from rats fed corn oil by stomach tube after a fast of 24 to 40 hours. For electron microscopy the tissues were fixed in chilled buffered osmium tetroxide and embedded in methacrylate. For light microscopy, other specimens from the same animals were fixed in formal-calcium, mordanted in K(2)Cr(2)O(7), and embedded in gelatin. Frozen sections were stained with Sudan black B or Sudan IV. About 20 minutes after feeding, small fat droplets (65 mmicro maximal diameter) appear in the striated border between microvilli. At the same time fat particles are seen within pinocytotic vesicles in the immediately subjacent terminal web. In later specimens the fat droplets are generally larger (50 to 240 mmicro) and lie deeper in the apical cytoplasm. All intracellular fat droplets are loosely enveloped in a thin membrane, the outer surface of which is sometimes studded with the fine particulate component of the cytoplasm. This envelope, apparently derived from the cell surface by pinocytosis, has at this stage evidently become a part of the endoplasmic reticulum. Just above the nucleus numerous fat droplets lie clustered within the dilated cisternae of the Golgi complex. As absorption progresses fat droplets appear in the intercellular spaces of the epithelium, in the interstitial connective tissue spaces of the lamina propria, and in the lumen of the lacteals. All of these extracellular fat droplets are devoid of a membranous envelope. The picture of fat absorption as reconstructed from these studies involves a stream of fat droplets filtering through the striated border, entering the epithelial cell by pinocytosis at the bases of the intermicrovillous spaces, and coursing through the endoplasmic reticulum to be discharged at the sides of the epithelial cell into extracellular spaces. From the epithelial spaces, the droplets move into the lamina propria and thence into the lymph. If the lumen of the endoplasmic reticulum is considered as continuous with the extracellular phase, then the entire pathway of fat absorption may be regarded as extracellular. However, it is impossible to evaluate from the electron microscopic evidence thus far available the quantitative importance of particulate fat absorption by the mechanism described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call