Abstract

Relatively few biomechanical models exist aimed at quantifying the mechanical risk factors associated with neck pain. In addition, there is a need to validate spinal-rhythm techniques for inverse dynamics spine models. Therefore, the present investigation was 3-fold: (1)the development of a cervical spine model in OpenSim, (2)a test of a novel spinal-rhythm technique based on minimizing the potential energy in the passive tissues, and (3)comparison of an electromyographically driven approach to estimating compression and shear to other cervical spine models. The authors developed ligament force-deflection and intervertebral joint moment-angle curves from published data. The 218 Hill-type muscle elements, representing 58 muscles, were included and their passive forces validated against in vivo data. Our novel spinal-rhythm technique, based on minimizing the potential energy in the passive tissues, disproportionately assigned motion to the upper cervical spine that was not physiological. Finally, using kinematics and electromyography collected from 8 healthy male volunteers, the authors calculated the compression at C7-T1 as a function of the head-trunk Euler angles. Differences from other models varied from 25.5 to 368.1N. These differences in forces may result in differences in model geometry, passive components, number of degrees of freedom, or objective functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.