Abstract

Heart failure is a major and costly problem in public health, which, in certain cases, may lead to death. The failing heart undergo a series of electrical and structural changes that provide the underlying basis for disturbances like arrhythmias. Computer models of coupled electrical and mechanical activities of the heart can be used to advance our understanding of the complex feedback mechanisms involved. In this context, there is a lack of studies that consider heart failure remodeling using strongly coupled electromechanics. We present a strongly coupled electromechanical model to study the effects of deformation on a human left ventricle wedge considering normal and hypertrophic heart failure conditions. We demonstrate through a series of simulations that when a strongly coupled electromechanical model is used, deformation results in the thickening of the ventricular wall that in turn increases transmural dispersion of repolarization. These effects were analyzed in both normal and failing heart conditions. We also present transmural electrograms obtained from these simulations. Our results suggest that the waveform of electrograms, particularly the T-wave, is influenced by cardiac contraction on both normal and pathological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.