Abstract

Strong anodic Ru(bpy)3 2+ electrogenerated chemiluminescence (ECL) was obtained at a cucurbil[8]uril (CB[8]) modified electrode in neutral conditions without the need of an additional coreactant. An ECL aptasensor was fabricated based on the strong ECL emission as well as the host-guest interaction between DNA and CB[8]. Firstly, amino group-terminated complementary DNA (DNA-NH2 ) was firmly immobilized on CB[8]/glass carbon electrode, which could further increase ECL intensity. Then, a ferrocene group-terminated lysozyme aptamer (Fc-DNA) was hybridized with complementary DNA. The inhibiting effect of ferrocene on Ru(bpy)3 2+ ECL resulted in the apparent decrease in ECL signal. When the modified electrode was incubated in lysozyme, specific binding between lysozyme and its aptamer could release the ferrocene group from the electrode surface, and the ECL emission was recovered. As a result, an 'on-off-on' mode ECL aptasensor for lysozyme was fabricated. In the range 0.14-140 pg ml-1 , the increased ECL intensities exhibited excellent linearity with the logarithm of lysozyme concentrations, and the detection limit was calculated as 0.093 pg ml-1 (3σ). The proposed ECL aptasensor exhibited satisfactory analytical performance, revealing the potential application of CB[n]s in an ECL sensing field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.