Abstract

An electrodynamics-based model was formulated for simulation of ion diffusion in microbial polysaccharides. The fixed charges and electrostatic double layers that may associate with microbial polysaccharides and their effects on ion diffusion were explicitly built into the model. The model extends a common multicomponent ion diffusion formulation that is based on irreversible thermodynamics under a zero ionic charge flux condition, which is only applicable to the regions without fixed charges and electrostatic double layers. An efficient numerical procedure was presented to solve the differential equations in the model. The model well described key features of experimental observations of ion diffusion in negatively charged microbial polysaccharides including accelerated diffusive transport of cations, exclusion of anions, and increased rate of cation transport with increasing negative charge density. The simulated diffusive fluxes of cations and anions were consistent with a cation exchange diffusion concept in negatively charged polysaccharides at the interface of plant roots and soils; and the developed model allows to mathematically study such diffusion phenomena. An illustrative example was also provided to simulate dynamic behavior of ionic current during ion diffusion within a charged bacterial cell wall polysaccharide and the effects of the ionic current on the compression or expansion of the bacterial electrostatic double layer at the interface of the cell wall and bulk solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call