Abstract

A self-enhanced electrochemical luminescence (ECL) composite material g-C3N4-CdTe QDs was prepared. The combination of g-C3N4 and CdTe QDs can amplify the ECL signal and improve the stability. Based on this discovery, g-C3N4-CdTe QDs and acetylcholine esterase (AChE) were used to construct an ECL sensor for organophosphorus pesticides (OP) detection. The sensor showed a strong initial ECL signal in PBS containing S2O82-. It is because that g-C3N4 not only acts as a co-reaction promoter to amplify the ECL signal of the CdTe QDs/S2O82- system but also acts as a carrier with large specific surface area to adsorb more CdTe QDs and improve the sensitivity of the sensor. The reaction of AChE and acetylthiocholine (ATCl) was hindered by organophosphorus pesticides (OPs). The ECL signal was enhanced by the addition of OPs, and a linear relationship was displayed between the increasing value and the concentration of malathion. A good linear range from 2.52 × 10-13 to 2.52 × 10-8mol L-1 was obtained and the limit of detection was 8.4 × 10-14mol L-1 under optimized experimental conditions. The results indicated that the sensor had promising applications for the detection of OPs in vegetable samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call