Abstract

A highly sensitive electrochemical sensor for the detection of mercury(ii) ions (Hg2+) was developed by using a three dimensional ordered macroporous polyaniline-platinum (3DOM PANI-Pt) composite film as a sensing platform. 3DOM PANI-Pt was realized by electrochemical co-deposition of Pt nanoparticles and PANI into the sacrificed silica template through the redox reaction involving the monomer aniline (AN) and PtCl6 2-. The G-rich oligonucleotide strand functionalized Au nanoparticle was employed as the Hg2+-mediated structural switch and to enhance the sensitivity. In the absence of Hg2+, the oligonucleotide strand formed an intramolecular duplex where the G-rich sequence was partially caged. In the presence of Hg2+, the release of the G-rich sequence was observed due to the stabilization of T-Hg2+-T, which formed an active G-quadruplex DNAzyme and catalyzed the reduction of H2O2. Under the optimal conditions, the current signal of H2O2 increased with increasing Hg2+ concentration in the dynamic range from 10-13 to 10-6 M, and the detection limit up to 8.7 × 10-14 M was seen. Further, the sensor was successfully utilized for the determination of Hg2+ in an authentic aquatic sample, with an acceptable accuracy compared to the method commercially available. In this paper, we proposed a general and simple strategy because only one oligonucleotide strand was required for both Hg2+ recognition and signal amplification, potentially allowing the detection of other metal ions or trace pollutants in environmental matrices by simply employing various DNA or aptamer probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.