Abstract

Breakthroughs in the synthesis of hybrid materials have led to the development of a plethora of chemiresistors that could operate at lower and lower temperatures. Herein, we report the fabrication of novel composite materials (SnO2-GO 4:1, 8:1 and 16:1) based on graphene oxide (GO) sheets decorated with tin dioxide nanoparticles, through a controlled chemical growth. We succeeded in obtaining widely spaced isles of the metal oxide on the carbonaceous material, thus enhancing the electron transfer process (i.e. favored convergent diffusion, as investigated through cyclic voltammetric analysis), which plays a pivotal role for the final sensing behavior. Indeed, only with SnO2-GO 16:1 sample, superior responses towards gaseous ethanol were observed both at 150 °C and at RT (by exploiting the UV light), with respect to pristine SnO2 and mechanically prepared SnO2(16)@GO material. Particularly, an improvement of the sensitivity (down to 10 ppb), response and recovery times (about of 60–70 s) was assessed. Besides, all the powders were finely characterized on structural (XRPD, FTIR and Raman spectroscopies), surface (active surface area, pores volume, XPS), morphological (SEM, TEM) and electrochemical (cyclic voltammetries) points of view, confirming the effective growth of SnO2 nanoparticles on the GO sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.