Abstract

In Part I, of this work the equivalent circuits for electrochemical impedance spectroscopy (EIS) modelling of PVD coated steels in 0.5 N NaCl solution were established. In this paper, Part II, the EIS spectra of such coated systems are modelled using the equivalent circuits. The circuit parameters obtained are correlated with the dielectric characteristics, and microstructure of steels and PVD hard coatings. Coating porosity and localised corrosion with exposure time have also been determined using the corrosion potential difference (Δ E corr) between mild steel and PVD coatings and polarisation resistance R p, which was obtained through EIS modelling using equivalent circuits. In addition, diffusion rates of the reactants (e.g. oxygen) through ‘permeable’ defects (e.g. pores) are studied by introducing the diffusion impedances W and O in EIS modelling. It has been found that the usage of impedances W and O is closely related to the crystallite features of PVD coatings. Warburg impedance ( W) is most suitable for columnar crystallites, while the co-tangent-hyperbolic diffusion impedance ( O) is best for the equiaxed crystallite structure. Finally, visual inspection, SEM examination, and the scanning reference electrode technique were employed to observe the corrosion progress of PVD coated steels with immersion time, in order to validate the EIS interpretation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.