Abstract

In this study, a novel electrochemical glucose biosensor, which integrates the silicon metal-assisted etching (MAE) technique and the glucose biosensor principle, is proposed. Metal-assisted etching (MAE) method using an AgNO3 and HF mixing solution as the etchant was employed to grow the silicon nanowire array (SNA) electrode. A thin gold shell is then sputtered over each silicon nanowire. Potassium ferricyanide, glucose oxidase (GOx), and a Nafion thin film were then sequentially coated onto the fabricated SNA for glucose detection. The processing time of the MAE and sputtering as well as the GOx concentration were optimized in terms of the redox peak currents of the SNA electrode. Compared with the corresponding plane gold electrode, the effective sensing area of the synthesized SNA electrode was measured to be 6.12 folds. Actual glucose detections illustrated that the SNA based devices could function at a sensitivity of 390.5 μA mM−1 cm−2 with a linear detection range from 55.1 μM–16.53 mM and detection limit of 11 μM. The proposed SNA electrode based glucose biosensor possesses advantages of simple fabrication process, low cost, and high sensitivity. It is feasible for future clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.