Abstract
Determination of hydrogen in solids such as high strength steels or other metals in the ppb or ppm range requires hot-extraction or melt-extraction. Calibration of commercially available hydrogen analysers is performed either by certified reference materials CRMs, often having limited availability and reliability or by gas dosing for which the determined value significantly depends on atmospheric pressure and the construction of the gas dosing valve. The sharp and sudden appearance of very high gas concentrations from gas dosing is very different from real effusion transients and is therefore another source of errors. To overcome these limitations, an electrochemical calibration method for hydrogen analysers was developed and employed in this work. Exactly quantifiable, faradaic amounts of hydrogen can be produced in an electrochemical reaction and detected by the hydrogen analyser. The amount of hydrogen is exactly known from the transferred charge in the reaction following Faradays law; and the current time program determines the apparent hydrogen effusion transient. Random effusion transient shaping becomes possible to fully comply with real samples. Evolution time and current were varied for determining a quantitative relationship. The device was used to produce either diprotium (H2) or dideuterium (D2) from the corresponding electrolytes. The functional principle is electrochemical in nature and thus an automation is straightforward, can be easily implemented at an affordable price of 1–5% of the hydrogen analysers price.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.