Abstract

An electrochemical approach to decreasing high levels of total organic carbon (TOC) in printed circuit board (PCB) copper sulfate plating baths has been investigated. The organic contaminants build-up over the course of pattern plating of PCBs, and at high concentrations they interfere with the quality of the plated copper. The electrochemical approach involves destroying the organic contaminants using electrochemical oxidation. Various anode materials (glassy carbon, lead, lead dioxide, platinum, iridium dioxide and doped tin dioxide) were screened for this application. Some corrosion data is presented for these anodes and their performance for TOC removal at various current densities has been roughly quantified using an apparent first order rate constant. The three best performing anode materials gave increasing oxidation rates going from platinum to doped tin dioxide to lead dioxide, unfortunately anode stability decreased in the same order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.