Abstract

Interaction between transcription factor and sequence-specific DNA plays an important role in regulation of gene transcription in biological systems. As electrochemical intercalators, gold (Au) nanoparticles show high catalysis activity and compatibility for detection of biological molecules. In this article, we report an electrochemical approach for sequence-specific DNA-binding transcription factor detection by Au nanoparticle-catalyzed silver (Ag) enhancement at interface between electrodes and electrolyte solutions. Here unimolecular hairpin oligonucleotides were self-assembled onto Au electrode surface and their elongation on Au electrode surface was carried out to form double-stranded oligonucleotides with transcription factor NF-κB (nuclear factor–kappa B) binding sites. Au nanoparticle-catalyzed Ag deposition was detected by anodic stripping voltammetry (ASV) for NF-κB binding. It was found that this method for the detection of sequence-specific DNA-binding protein showed pronounced specificity and that the detection limit was as low as 0.1 pM. The findings indicated that our method can have applications in transcription regulation, operator site recognition, and functional gene inspection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.