Abstract

Abstract The state of the art of conductive functional textile woven fabrics have given rise to a demand for textile integrated electrodes. Herein, we report a highly conductive and flexible woven fabric electrode using highly absorbent lyocell fabric as the substrate and cationically functionalized and activated charcoal decorated graphite composite (AC-GC) as the coating film. This (AC-GC) coated lyocell fabric is used as a cathode for quasi-solid state dye sensitized solar cell (Q-DSSCs). Our suggested fabric based cathode shows sufficiently high conductivity and electrocatalytic activity (ECA) compared to platinum (Pt) based reference counter electrode (CE). This efficient CE demonstrates extremely low charge transfer resistance (RCT) of 1.56 Ω cm2 with polyethylene oxide based quasi-solid electrolyte. The cationic charged enriched charcoal decorated graphite planner structure provide more availability of active sites for the reduction of negatively charged tri-iodide ( I 3 - ) ions present in polymeric gel electrolyte. The formation of porous charcoal voids and conductive graphite channels entrap large amounts of gel electrolyte and provide fast diffusion of iodide/tri-iodide ( I - / I 3 - ) ions. Our organic system of AC-GC coated lyocell fabric based DSSCs assembly demonstrated 7.09% power conversion efficiency (PCE) when fabricated with quasi-solid electrolyte. This AC-GC coated fabric CE is also highly stable in water and electrolyte solution. The adequate electrocatalytic activity and cyclic stability demonstrate that this AC-GC coated fabric can be used to replace expensive Pt CE and can be used in flexible solar cells in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call