Abstract

Electrocardiograms (ECGs) play a pivotal role in the diagnosis and prediction of cardiovascular diseases (CVDs). However, traditional methods for ECG classification involve intricate signal processing steps, leading to high design costs. Addressing this concern, this study introduces the Multiscale Convolutional Causal Attention network (MSCANet), which utilizes a multiscale convolutional neural network combined with causal convolutional attention mechanisms for ECG signal classification from the PhysioNet MIT-BIH Arrhythmia database. Simultaneously, the dataset is balanced by downsampling the majority class and oversampling the minority class using the Synthetic Minority Oversampling Technique (SMOTE), effectively categorizing the five heartbeat types in the test dataset. The experimental results showcase the classifier’s performance, evaluated through accuracy, precision, sensitivity, and F1-score and culminating in an overall accuracy of 99.35%, precision of 96.55%, sensitivity of 96.73%, and an F1-recall of 96.63%, surpassing existing methods. Simultaneously, the application of this innovative data balancing technique significantly addresses the issue of data imbalance. Compared to the data before balancing, there was a significant improvement in accuracy for the S-class and the F-class, with increases of approximately 8% and 13%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call