Abstract
Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived. Inkjet printing is a low-cost and versatile technique that can facilitate the transfer of nanomaterial-based sensors to the market. Herein, an electroactive and self-assembling inkjet-printable ink based on protein-nanomaterial composites and exfoliated graphene is reported. The consensus tetratricopeptide proteins (CTPRs), used to formulate this ink, are engineered to template and coordinate electroactive metallic nanoclusters (NCs), and to self-assemble upon drying, forming stable films. The authors demonstrate that, by incorporating graphene in the ink formulation, it is possible to dramatically improve the electrocatalytic properties of the ink, obtaining an efficient hybrid material for hydrogen peroxide (H2 O2 ) detection. Using this bio-ink, the authors manufactured disposable and environmentally sustainable electrochemical paper-based analyticaldevices (ePADs) to detect H2 O2 , outperforming commercial screen-printed platforms. Furthermore, it is demonstrated that oxidoreductase enzymes can be included in the formulation, to fully inkjet-print enzymatic amperometric biosensors ready to use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.