Abstract
ABSTRACT Effective integration and compromise between theories and empirical data are essential for an operational economic model. However, existing economic models often neglect the intricate fluctuations and transitions that occur in weeks and days. This research proposes an Input–Output-based algorithm to introduce the time domain into economic modelling. Using daily electricity consumption big data in Chongqing as a proxy for economic activities, we quantitatively analyse the chronological interactions among industrial sectors and reveal that a longer duration is required by the heavy industry sector to signal an intermediate production in the service sector than any other sectors in this municipality. With the proposed model, we forecast the economic impact induced by demand changes for consumer goods under three growth scenarios. The model not only serves as a methodological bridge between theoretical and data-driven approaches but also offers new insights into the dynamic interplay of sectoral activities over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.