Abstract

An electrically modulated single-/dual-color imaging photodetector with fast response speed is developed based on a small molecule (COi 8DFIC)/perovskite (CH3 NH3 PbBr3 ) hybrid film. Owing to the type-I heterojunction, the device can facilely transform dual-color images to single-color images by applying a small bias voltage. The photodetector exhibits two distinct cut-off wavelengths at ≈544 nm (visible region) and ≈920 nm (near-infrared region), respectively, without any power supply. Its two peak responsivities are 0.16 A W-1 at ≈525 nm and 0.041 A W-1 at ≈860 nm with a fast response speed (≈102 ns). Under 0.6 V bias, the photodetector can operate in a single-color mode with a peak responsivity of 0.09 A W-1 at ≈475 nm, showing a fast response speed (≈102 ns). A physical model based on band energy theory is developed to illustrate the origin of the tunable single-/dual-color photodetection. This work will stimulate new approaches for developing solution-processed multifunctional photodetectors for imaging photodetection in complex circumstances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.