Abstract
With the continuous progress of urbanization, determining the charging and discharging strategy for randomly parked electric vehicles to help the peak load shifting without affecting users’ travel is a key problem. This paper design a reinforcement learning-based method for the electric vehicle-assisted demand response management system. Specifically, we formalize the charging and discharging sequential decision problem of the parking lot into the Markov process, in which the state space is composed of the state of parking spaces, electric vehicles, and the total load. The charging and discharging decision of each parking space acts as the action space. The reward comprises the penalty term that guarantees the user’s travel and the sliding average value of the load representing peak load shifting. After that, we use a Deep Q-Network (DQN)-based reinforcement learning architecture to solve this problem. Finally, we conduct a comprehensive evaluation with real-world power usage data. The results show that our proposed method will reduce the peak load by 10% without affecting the travel plan of all electric vehicles. Compared with random charging and discharging scenarios, we have better performance in terms of state-of-charge (SoC) achievement rate and peak load shifting effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.