Abstract

An electrical cathode model (ECM) of a high pressure sodium lamp (HPS) based on physical laws has been developed. The proposed ECM calculates the instantaneous voltage drop in a cathode sheath and the temperature distribution inside the cathode using as input parameter the cathode geometry and the positive column current. The model is based on the electrode heat transport equation, solved using the finite elements method. It is found that the ECM predicts in a satisfactory way the cathode voltage drop over a wide range of work conditions. The obtained results were compared with those reported in the current literature. It can be concluded that the ECM is a useful tool in understanding the interaction between the positive column and the cathode in order to improve, for instance, HPS lamp ballast designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.