Abstract

Concentrated cell suspensions exhibit different mechanical behavior depending on the mechanical stress or deformation they undergo. They have a mixed rheological nature: cells behave elastically or viscoelastically, they can adhere to each other whereas the carrying fluid is usually Newtonian. We report here on a new elasto-visco-plastic model which is able to describe the mechanical properties of a concentrated cell suspension or aggregate. It is based on the idea that the rearrangement of adhesion bonds during the deformation of the aggregate is related to the existence of a yield stress in the macroscopic constitutive equation. We compare the predictions of this new model with five experimental tests: steady shear rate, oscillatory shearing tests, stress relaxation, elastic recovery after steady prescribed deformation, and uniaxial compression tests. All of the predictions of the model are shown to agree with these experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.