Abstract
A thermal elastic-plastic stress analysis is carried out on cross-ply and angle-ply steel fiber reinforced aluminum metal-matrix laminated composite arch under uniform temperature distribution. The composite material is assumed to be strain hardening linearly and consists of 4, 8, 12, and 16 layers bonded symmetrically and anti-symmetrically. First yielding temperature, thermal residual stresses, and the distribution of these stresses under thermal loading are investigated by using the finite element method (FEM). The effects of orientation angle, layer number, and stacking sequence on the residual stresses are analyzed. The magnitudes of residual stress components increase gradually depending on the temperature increment. It is found that the orientation angle affects the yield point and the intensity of residual stresses significantly, while the layer number and stacking sequence result in slight differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.