Abstract

BackgroundHost immune response is coordinated by a variety of different specialized cell types that vary in time and location. While host immune response can be studied using conventional low-dimensional approaches, advances in transcriptomics analysis may provide a less biased view. Yet, leveraging transcriptomics data to identify immune cell subtypes presents challenges for extracting informative gene signatures hidden within a high dimensional transcriptomics space characterized by low sample numbers with noisy and missing values. To address these challenges, we explore using machine learning methods to select gene subsets and estimate gene coefficients simultaneously.ResultsElastic-net logistic regression, a type of machine learning, was used to construct separate classifiers for ten different types of immune cell and for five T helper cell subsets. The resulting classifiers were then used to develop gene signatures that best discriminate among immune cell types and T helper cell subsets using RNA-seq datasets. We validated the approach using single-cell RNA-seq (scRNA-seq) datasets, which gave consistent results. In addition, we classified cell types that were previously unannotated. Finally, we benchmarked the proposed gene signatures against other existing gene signatures.ConclusionsDeveloped classifiers can be used as priors in predicting the extent and functional orientation of the host immune response in diseases, such as cancer, where transcriptomic profiling of bulk tissue samples and single cells are routinely employed. Information that can provide insight into the mechanistic basis of disease and therapeutic response. The source code and documentation are available through GitHub: https://github.com/KlinkeLab/ImmClass2019.

Highlights

  • Host immune response is coordinated by a variety of different specialized cell types that vary in time and location

  • We developed gene signatures for different immune cells that could be used to quantify the prevalence from RNA-seq data obtained from a heterogeneous cell population

  • We developed two classifiers - one for immune cell subsets and one for T helper cell subsets - using elastic-net logistic regression with cross validation. The features of these classifiers were used as a starting point for generating gene signatures that captured with fifteen binary elastic-net logistic regression models the most relevant gene sets to distinguish among different immune cell types without including too much noise

Read more

Summary

Introduction

Host immune response is coordinated by a variety of different specialized cell types that vary in time and location. While host immune response can be studied using conventional low-dimensional approaches, advances in transcriptomics analysis may provide a less biased view. Leveraging transcriptomics data to identify immune cell subtypes presents challenges for extracting informative gene signatures hidden within a high dimensional transcriptomics space characterized by low sample numbers with noisy and missing values. To address these challenges, we explore using machine learning methods to select gene subsets and estimate gene coefficients simultaneously. Flow cytometry measures on the order of 10 parameters simultaneously and relies on prior knowledge for selecting relevant molecular markers, which could provide a biased view of the immune state within

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.